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We study the structural characteristics of complex networks using the representative eigenvectors of the
adjacent matrix. The probability distribution function of the components of the representative eigenvectors are
proposed to describe the localization on networks where the Euclidean distance is invalid. Several quantities
are used to describe the localization properties of the representative states, such as the participation ratio, the
structural entropy, and the probability distribution function of the nearest neighbor level spacings for spectra of
complex networks. Whole-cell networks in the real world and the Watts-Strogatz small-world and Barabasi-
Albert scale-free networks are considered. The networks have nontrivial localization properties due to the
nontrivial topological structures. It is found that the ascending-order-ranked series of the occurrence probabili-
ties at the nodes behave generally multifractally. This characteristic can be used as a structural measure of
complex networks.
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I. INTRODUCTION

Recent years have witnessed an avalanche of research on
complex networks and their applications in diverse fields �1�.
Structural measures of complex networks are the cornerstone
for understanding the relations between structures, dynamics,
and functions. Real-world networks generally have nontrivial
properties, such as the small-world �2�, scale-free �3�, motif
�4�, modularity, hierarchy �5�, and fractal �6� properties, and
so on. The small-world effect is that on average the nodes
can reach each other with only a small number of hops. The
scale-free property refers to the number of edges per node
obeying a right-skewed distribution. It is also found that
some special subgraphs containing several connected nodes,
called motifs, occur with significant probabilities compared
with those in the corresponding randomized networks. These
three individual, paired, or local-pattern-based properties are
called microproperties. On the other hand, modularity is a
kind of macroproperty representing that a network can be
separated into loosely connected groups within which the
nodes are densely connected.

To a certain degree, dynamics on networks can be re-
garded as the transport processes of mass, energy, signal,
and/or information at different structural scales �7,8�. Some-
times we have to deal with networks with an unreasonably
large number of nodes and edges, e.g., neuron networks and
the worldwide web, when designing a coarse-graining proce-
dure is essential �9�. The patterns at different scales may
provide a reasonable solution to these problems. It is found
that some real-world networks have hierarchical structures,
in which the small-world and scale-free properties can coex-
ist �5�. Moreover, many real-world networks behave self-
similarly at different structural levels �fractal behavior� �6�.

Although great progress has been achieved, the measures
of complex networks are not yet fully understood. Just as
pointed out by Newman �10�, our techniques for analyzing
networks are at present no more than a grab-bag of miscel-
laneous and largely unrelated tools, and we still do not have
a systematic program for characterizing network structures.
Furthermore, the measures of network structures, such as the
microproperties, the patterns at different scales, and the mac-
roproperties, are generally simple applications of the con-
cepts in graph theory, bioinformatics, social science, and
fractal theory, namely, they are not dynamics based. We can-
not expect simple and reasonable relations between the mea-
sures and the dynamical processes on networks.

The lack of powerful tools to characterize network struc-
tures is an essential bottleneck in understanding dynamical
processes on networks. One typical example is the synchro-
nizability of complex networks. Detailed work shows that
almost all the structural measures affect the synchronizabili-
ties in complicated ways �11�, based upon which we cannot
reach a clear picture of the mechanisms for synchronization
processes on networks.

Dynamics-based measures of complex networks may be
the key to the problems. The structures of complex networks
can induce nontrivial properties in the physical processes oc-
curring on them. The physical processes in turn can be used
as a probe to capture the structural properties. Well-studied
dynamical processes, such as random walks �12,13� and
Boolean dynamics �14�, can be good candidates as probes.
To cite an example, random walks on complex networks that
are biased toward a target node show a localization-
delocalization transition �12�.

In the present paper, we map networks to large clusters,
namely, the nodes and edges to atoms and the bonds between
them, respectively. The localization properties of electrons in
the clusters can be used as measures of the structural prop-
erties of the networks. We try to detect global symmetries
from the spectra and the eigenvectors of complex networks.*phylibw@nus.edu.sg
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Very recently, much attention has been focused on detecting
global characteristics embedded in spectra of complex net-
works due to their potential application in understanding the
organization mechanisms and the synchronization dynamics
of complex networks �8,15,16�. To our best knowledge, this
is the first time that the global characteristics of complex
networks have been detected from the eigenvectors, which
contain more information about the system than eigenvalues.

In addition to being a measure of network structures, the
structure-induced localization may have potential applica-
tions in understanding the electronic properties of materials
such as conductive polymers and carbon nanonets. The in-
trachain windings in conductive polymers can introduce
long-range edges into the original one-dimensional systems,
resulting in nontrivial network structures �17,18�. It is also
found that random networks of carbon nanotubes, called
nanonets, can mimic a variety of basic electronic functions
from the conductive properties of metals to the less conduc-
tive characteristics of semiconductors �19�. Indeed, nanonets
have paved the way for carbon to serve as the foundation for
future electronic devices. The effect of network structures on
electronic properties has been one of the most active topics
in recent years �7,20�.

The paper is organized as follows. In Sec. II the concept
of localization on complex networks is presented. The occur-
rence probabilities on the nodes are proposed to describe
quantitatively the localization effects. In Sec. III the methods
to measure the localization properties are described in detail.
The participation ratio, the structural entropy, and the prob-
ability distribution function of the nearest neighbor level
spacings of spectra are used to illustrate the localization in a
global way. Wavelet transform is then used to find the de-
tailed structural properties of the probability distribution
function of the occurrence probabilities on the nodes. As
examples, we consider the Watts Strogatz small-world and
the Barabasi-Albert scale-free model networks and whole-
cell networks in the real world. The results are shown in Sec.
IV. We will show that the global symmetries in networks can
induce multifractal structures in the eigenvectors. As a con-
clusion, the nontrivial structures of complex networks can
induce significant localization, which in turn can be used as a
global measure of the structural symmetries.

II. LOCALIZATIONS ON NETWORKS

We consider an undirected complex network with N iden-
tical nodes, whose topological structure can be described by
an adjacency matrix A. The elements Aij are 1 �0� if the
nodes i and j are connected �disconnected�, respectively. If
we consider the nodes as atoms and the edges as bonds, the
network can be mapped to a large molecule �16�. For an
electron moving in such a molecule, the tight-binding Hamil-
tonian is

H = �
n=1

N

�n�n��n� + �
m�n

N

Amntmn�m��n� , �1�

where �n is the site energy and tmnAmn the hopping integral
for the bond between sites m and n.

The tight-binding Hamiltonian Eq. �1� is usually used to
study disorder-induced localizations. In the present form, the
matrix A is explicitly introduced to describe the structure of
the system. For a one-dimensional perfectly regular lattice,
we have �n=� , tmn= t, and Amn=��m−n�1�. The Bloch
wave function of an electron extends all over this perfectly
regular lattice. Disorder in structures can induce a transition
from extended to localized states. The wave function for a
localized state decreases exponentially with the distance
from its center. The disorder effects include random distribu-
tions of the site energies ��n�, the hopping integrals �tmn�, and
the edges in the structures �Amn�. The disorder comes from
the different kinds of atoms on the lattice points, differences
of the separations of successive lattice points, and random-
ness in the structure. At the same time, there may be some
symmetries in the distributions of the site energies, the hop-
ping integrals, and the edges, which may lead to delocaliza-
tion of the wave functions.

In the usual Anderson model �21�, the disorder effect due
to the random distribution of the site energies is considered,
i.e., �n is a random variable satisfying a certain distribution
probability function while tmn= t , Amn=��m−n�1�. The
site energies may obey a special distribution rather than that
in the Anderson model, such as a periodic �22� or a power-
law �23� function. In the literature �24,25�, a one-
dimensional quasicrystal model has been introduced that the
separation of two successive lattice points takes one of the
two values u and v. This model considers the disorder effect
of the distribution of the hopping integrals. We have �n
=const, tmn= tu or tv, and Amn=��m−n�1�. tu and tv are the
hopping integrals corresponding to the separations u and v,
respectively. It is found that quantum systems with quasip-
eriodic structures are in an intermediate state, which can be
described with critical wave functions. A critical wave func-
tion obeys a power law with respect to the distance from its
center.

To investigate problems such as vibrational spectra of
glasses, instantaneous normal modes in liquids, electron hop-
ping in amorphous semiconductors, and combinatorial opti-
mization, Euclidean random matrix models are widely used
in the literature �26�, in which the disorder is due to the
random positions of the sites, and the matrix elements are
given by a deterministic function of the distances.

The models mentioned above generally focus on the dis-
order effects of the site energies and the hopping integrals.
These models have also been extended to nontrivial struc-
tured systems such as the Cayley tree �27� and small-world
networks �17�. Nontrivial effects of the structures of the sys-
tems are reported, but the interplay between the disorder due
to the site energies and that due to the structures makes it
difficult to distinguish the structure disorder effect from the
site energy disorder effect.

In the networks considered in the present paper, however,
the nodes are all identical and the disorder effect comes from
the nontrivial topological structure. We focus our attention
on the disorder effect of the network structure, that is, we
assign �n=0 and tmn=1, which leads to H=A. The localiza-
tion on the network refers to the network structure-induced
characteristics of the wave functions for this system. The
usual Anderson model �21� is a special case where there exist
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connections in the networks only between the nearest neigh-
bors in Euclidean space.

Statistically, the structures of networks should display cer-
tain symmetries due to the general rules obeyed in the con-
struction of the networks. Recent work demonstrated that
many theoretical and real-world networks have statistically
self-similar structures �6�. Therefore, there are two competi-
tive mechanisms determining the wave function properties:
the randomness of the bonds in the networks tends to cause
localization of the wave function, whereas the symmetries of
the networks tend to make the wave function extended. We
thus expect rich structures embedded in the wave functions.
As is well known, aperiodic crystals lead to fractal wave
functions �25,28�. An interesting question is then how the
global symmetries of networks affect the localization prop-
erties. The localization can be used as a probe of the charac-
teristics of the network structures.

The states in the center of the energy band have the best
chance to remain extended for a moderately disordered sys-
tem. The eigenvector corresponding to the special eigenvalue
close to the center of the spectrum for a network, denoted by
Ec, is employed as the representative state to illustrate the
characteristics of the considered system.

In the traditional study of wave function localization, the
physical systems have deterministic structures in real-world
Euclidean space, which leads to natural definitions of the
localized, intermediate, and extended states of the systems.
Obviously, these definitions are invalid for general complex
networks without deterministic structures in Euclidean space.
In this paper, we describe the localization effects using the
probability distribution function �PDF� of the occurrence
probabilities at the nodes, i.e., the values of the components
for the representative eigenvector. Based on the PDF of the
occurrence probabilities, the traditional definitions are ex-
tended to a much more general version to describe the local-
ization properties on complex networks.

In Euclidean space, for a state ��r�, the occurrence prob-
ability is ��r�= ���r��2	F�r�. Because the value of the dis-
tance r is distributed homogeneously in the considered re-
gion, we can regard it as a homogeneously distributed
random variable. The direct sampling method in Monte
Carlo simulations tells us that the probability distribution of
� should be P����

dF−1���
d� . Hence, it is reasonable to define

the localized, critical, and perfectly extended states on com-
plex networks using the PDFs of the occurrence probabili-
ties,

P��� � 
 ��� − �0� , extended,

�−�1+���� 	 0� , critical,

�−�1+���� = 0� , localized.
� �2�

The PDF of the representative function is a very powerful
measure for capturing the localization properties. It can be
used to find the localization properties without using the dis-
tance in real-world Euclidean space.

Because no derivative exists for a fractal wave function in
Euclidean space, the extension procedure in defining critical
and localized states on networks cannot be simply used to
define fractal properties on networks by using the PDF of the

occurrence probabilities. In the present paper, we detect di-
rectly the fractal characteristics in the ascending-order-
ranked series of the the occurrence probabilities, as described
in detail in Sec. III C.

III. METHODS

A. Structural entropy

We denote the representative state as V= �V1 ,V2 , . . . ,VN�.
The occurrence probabilities at the nodes are �m= �Vm�2 , m
=1,2 , . . . ,N. The localization extent of the state can be de-
scribed quantitatively with the participation ratio �29,30�,

Q =
1

N�
m=1

N

�m
2

. �3�

For a perfect extended state we have Q=1, while for a state
strongly localized on one node it tends to 1

N . Generally, Q
should be in the range of � 1

N ,1�.
However, this participation ratio can capture only the

primary-level complexity in the localization properties,
namely, the extension of the representative eigenvector to
NQ nodes on the network. Many PDFs with different local-
ization behaviors may result in the same Q. The simplest one
is a steplike function: on NQ nodes the occurrence probabili-
ties are 1

NQ , while on the left N�1−Q� nodes the occurrence
probabilities are 0.

The secondary-level complexity in the localization prop-
erties is the deviation of the PDF from the steplike function.
This deviation corresponds to the shape of the PDF, which
can be extracted by using the structural entropy �31�

Sstr = − �
m=1

N

�m ln �m − ln�QN� . �4�

For the simple steplike condition, we have Sstr=0. Sstr�0
tells us the shape deviation of PDF from the simple one. The
pair of localization quantities �Q ,Sstr� is widely used up to
date to describe the localization in disordered and aperiodic
systems, and for the statistical analysis of spectra in diverse
fields such as quantum chemistry, condensed matter physics,
and quantum chaos �32,33�.

B. Statistical properties of the spectra

The localization property can also be described with the
random matrix theory �RMT� �30,34–36�. RMT was initially
developed to understand the energy levels of complex nuclei
and other kinds of complex quantum systems. Recently, the
RMT theory has been proposed to capture the structural and
dynamical properties of complex networks �15�.

One of the most important quantities in the theory is the
PDF for the nearest neighbor level spacing �NNLS� of the
spectrum. It is theoretically and numerically confirmed that
in the localized and extended states the PDFs of the NNLS
should be the Poisson and Wigner-Dyson distributions, re-
spectively �37–39�. Generally, for an intermediate state, the
PDF obeys the Brody distribution
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U�s� =



�
s
−1 exp�− 
 s

�
�
� , �5�

where s is the NNLS and � the characteristic distribution
width. The Poisson and the Wigner-Dyson distributions are
the two extremes with 
=1 and 2, respectively.

Introducing the accumulated function C�s�=�0
sU�x�dx,

some trivial calculations lead to

ln R�s� 	 ln�ln
 1

1 − C�s��� = 
 ln s − 
 ln � . �6�

From this formula we can determine reliably the values of
the parameters 
 and �.

To obtain the spacing s in units of the local mean level
spacing, we should conduct a standard procedure, called un-
folding. Denoting the spectrum of a network by
�1 ,�2 , . . . ,�N, the accumulation density function for the
spectrum is G��m�=m , m=1,2 , . . . ,N. Fitting this relation
with a polynomial function, we can separate it into a smooth
part and a fluctuating part as

G��m� = Gav��m� + Gf��m� . �7�

The NNLS can be obtained as P�����−�1+��. For a complex
network, we generally have not enough knowledge of its
spectrum, and the polynomial function fitting method can
lead to a reliable result. In this paper, the order of the poly-
nomial function is 17.

C. Wavelet transform

The detailed properties for the PDF of the occurrence
probabilities can be used as a measure of the global structural
symmetries. However, determining this PDF is a nontrivial
task �40�. Assume the probability values have been sorted in
ascending order, namely, �= ��1
�2¯ 
�N�, which can be
regarded as the profile of the nearest spacing series, ��
= ��2 -�1 ,�3 -�2 , ¯ ,�N -�N-1�. The local structures of �� can
tell us the probability distribution function of �. It is found
that the series � generally behaves multifractally.

The wavelet transform �WT� �41� is used to detect the
fractal properties embedded in the ascending-order-ranked
series �. The increasing trend in the series � makes box-
counting-based techniques invalid to quantify the local scal-
ings. In the wavelet transform, the contributions of the poly-
nomial trends can be removed effectively. A multifractal
series can be decomposed into many subsets characterized by
different local Hurst exponent h, which quantifies the local
singular behavior and thus is related to the local scaling of
the series. The statistical properties of these subsets can be
quantified by the fractal dimension D�h� of the subset whose
local Hurst exponent is h.

As a standard procedure, we first find the WT maximal
values �Tg(a ,�k�a�)�k=k1 ,k2 , . . . ,kJ��, where a is the given
scale. The partition function should scale in the limit of small
scales as

Z�a,q� = �
k=k1

kJ

�Tg„a,�k�a�…�q � a��q�. �8�

The fractal dimension D�h� can be obtained through the Leg-
endre transform,

D�h� = qh − ��q�, h =
d��q�

dq
. �9�

For a monofractal structure we have a linear relation ��q�
=qH−1. H is the global Hurst exponent. For positive and
negative q, ��q� reflects the scaling of the large fluctuations
and small fluctuations, respectively.

We use the real analytical wavelet g�n� among the class of
derivatives of the Gaussian function, by which the polyno-
mial trends up to order n can be removed. The results with
n=7 are presented. n=5 and 6 lead to almost the same re-
sults. As comparison, we detect also the scaling behaviors in
the randomized series �R, called the shuffled series.

In this paper, we are interested in the characteristic point
at which the fractal dimension reaches its maximum value
(hc ,D�hc�). It can tell us the nonhomogeneous distribution of
the series � and the fractal characteristics of the principal
subset.

IV. NUMERICAL RESULTS

We examine the localization behaviors for cellular net-
works �42�, which are compiled by using a graph-theoretical
representation of all the biochemical pathways based upon
the WIT integrated-pathway genome database of 43 species
from Archaea, Bacteria, and Eukarya �43�. The WIT �What
Is There� is a system designed to support comparative analy-
sis of sequenced genomes and generate metabolic recon-
structions based upon chromosomal sequences and metabolic
modules. Whole-cell networks consider cellular functions
such as intermediate metabolism and bioenergetics, informa-
tion pathways, electron transport, and transmembrane trans-
port. The directed edges are replaced simply with nondi-
rected edges. We consider only cellular networks with sizes
larger than 500.

We study also the localization behaviors for the Watts-
Strogatz small-world �WSSW� �2� and the Barabasi-Albert
scale-free �BASF� �3� networks. For the WSSW model, we
construct first a regular circular lattice with each node con-
necting with its d right-handed nearest neighbors. For each
edge we rewire it with probability pr to another randomly
selected node. Self- and double edges are forbidden. In this
way, we can introduce randomness into the resulting net-
works. Moreover, compared with the initial regular lattice,
the rewiring procedure may introduce also “long-range”
edges to the resulting networks, which can reduce signifi-
cantly the average number of hops required for the nodes to
reach each other. This is the so-called small-world effect.

The BASF networks are the results of a preferential
growth mechanism, which exists widely in diverse fields.
Starting from several connected nodes as a seed, at each
growth step a new node is added and w edges are established
between this node and the existing network. The probability
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for an existing node to be connected with the new node is
proportional to its degree. Self- and double edges are forbid-
den. For the resulting networks, the number of edges per
node obeys a power law, namely, no characteristic scale ex-
ists in this distribution.

Figure 1 presents the localization quantities �Q ,Sstr� for
the networks. For the WSSW networks, the randomness in-
troduced by the rewiring procedure has two competing ef-
fects, the long-range edges which favor extension, and the
breaking of symmetry which induces localization. For the
BASF networks, the increase of w increases the heterogene-
ity and the connections between the nodes, which induce
localization and extension, respectively. Hence, there exist
complex relations between pr or w and �Q ,Sstr� for the two
kinds of networks, as shown in Figs. 1�a� and 1�b� and 1�c�
and 1�d�, respectively. For the WSSW networks, the partici-
pation ratio decreases rapidly from 1 to 0.22 when pr
changes slightly from 0 to 0.02, and then goes up gradually
with the increase of pr. As for the structural entropy, it in-
creases abruptly when pr changes from 0 to 0.02; after that it
decreases gradually with increase of pr.

Figure 2 shows Sstr versus Q. As references, we calculate
also the localization quantities for the critical and the local-
ized states, namely, P�����−�1+�� and P���� 1

� , respectively.
Starting from ��r��r−�, we calculate the values of
�� n

N � , n=1,2 , . . . ,N. The resulting normalized values can be
regarded as the localized state. The critical states with �
=1–10 are calculated, and the corresponding values of � are
0.5–0.05, respectively. N is the size of the considered net-
work. The same procedure can be used to generate the local-
ized states by starting from ��r��exp�−�r�. The localized
states with �=0.01–100 are generated.

The localization properties of the BASF networks can be
captured by the critical states with extremely small values of

�. The WSSW and whole-cell networks are generally in be-
tween the two typical �localized and extended� states.

We find that the PDFs of the NNLSs for all the networks
can be described very well by using the Brody distribution in
a unified way. The results for the parameter 
 are shown in
Fig. 3. For WSSW networks, with the increase of the rewir-
ing probability pr, the parameter 
 increases rapidly from
1.02�0.053 at pr=0 to 1.95�0.065 at pr=0.14. For pr
	0.14, 
 is almost the same, namely, �2.0. That is, the

FIG. 1. �Color online� Localization quantities �Q ,Sstr� for the
WSSW and BASF networks. There exist complex relations between
pr or w and �Q ,Sstr� for the BASF and WSSW networks. For the
WSSW networks, from pr=0 to pr=0.02 there exists an abrupt
decrease or increase in the value of �Q ,Sstr�, as shown in �a� and
�b�, respectively. Then with increase of the rewiring probability pr,
the participation ratio tends to increase while the structural entropy
tends to decrease. �c�, �d� Results for BASF networks.

FIG. 2. �Color online� Relations of Sstr versus Q for the WSSW,
BASF, and whole-cell networks. The localization quantities for the
distributions P�����−�1+�� and P����1 /�, namely, the critical and
localized states, are shown as references. Starting from ��r��r−�,
the set of normalized values of ��n /N� , n=1,2 , . . . ,N can be re-
garded as the critical state. Assigning �=1–10, the corresponding
values of � are 0.5–0.05. N is the size of the considered network.
The same procedure is also used to generate the localized states by
starting from ��r��exp�−�r�. The localized states with �
=0.01–100 are generated. The localization properties of the BASF
networks can be captured by the critical state with extremely small
values of �. The WSSW and whole-cell networks are generally in
between the two typical states.

FIG. 3. �Color online� Value of Brody parameter 
 versus net-
work parameters pr and w. �a� WSSW and �b� BASF networks.
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representative eigenvector changes from a nearly localized
state �pr=0� to an extended state in this interval of pr. For
networks with pr	0.14, the representative eigenvectors are
almost perfectly extended, while for BASF networks, with
increase of w, the greater number of edges can induce sig-
nificant extensions of the representative states. 
 reaches its
asymptotic value �1.90. Due to the heterogeneity, BASF
networks cannot reach a perfectly extended state.

In a considerably wide range of q, the partition functions
behave scale-invariantly as in Eq. �8�. There are three kinds
of typical WT transform results. Here we present several
typical examples. In the whole range of q=−5 to 5, the
WSSW network with pr=0.05 and the BASF network with
w=8 are multifractal with only one characteristic point
(hc ,D�hc�), as shown in Figs. 4 and 5, respectively. Some-
times, the multifractal degenerates to a monofractal. Figure 6
gives another condition where the fractal behaviors can be
separated into two branches, namely, q�0 and q	0. The
characteristic points for these two branches are not the same.
That is, the principal subsets for the large and the small
fluctuations are different. These three conditions are called
monofractal, multifractal, and branched multifractal, respec-
tively.

The scaling properties for the real-world and model net-
works are listed in Table I. For the mono- and multifractals,
we present simply the global Hurst exponent H and the char-
acteristic point (hc ,D�hc�), respectively. For the branched
multifractal we give the scaling characteristics for the two
branches q�0 and q	0, separated by the solidus /. To cite
an example, for the cellular network M. jannaschii, the char-
acteristic point for the branch q�0 is �0.63,0.96� and that for
the branch q	0 is �0.83,1.03�. It is denoted as �0.63,0.96�/
�0.83,1.03�. The results for the corresponding shuffled series
are presented also. We discard the networks where the scal-
ing behaviors of the original � and the randomized series �R
are undistinguishable. The sizes of the WSSW and BASF
networks are N=2000. N=1000, 3000, and 4000 lead to al-
most same results �not shown in Table I�.

The WSSW and BASF networks are almost all mono- or
multifractals with the values of hc mainly in the range of
0.66�0.05. However, most of the considered real-world net-
works behave as branched multifractals. Hurst exponents
larger than 1 and near 0 correspond to nonsingularity and
white noise, respectively. Discarding these trivial conditions,
we find that the multifractal behaviors are embedded in the
branches of q	0, and the values of hc are basically in the
range of 0.8�0.05. The larger values of hc for the large

FIG. 4. �Color online� Multifractal scaling characteristics of the
ascending-order-ranked series � for the real-world, WSSW, and
BASF networks. The multifractal behavior for the WSSW network
with d=2, N=2000, and pr=0.05 is presented as a typical ex-
ample. In the whole range of q=−5 to 5, there is only one charac-
teristic point (hc ,D�hc�)= �0.63,0.958�.

FIG. 5. �Color online� Multifractal scaling characteristics of the
ascending-order-ranked series � for the real world, WSSW, and
BASF networks. The multifractal behavior for the BASF network
with w=8 and N=2000 is presented as a typical example. In the
whole range of q=−5 to 5, there is only one characteristic point
(hc ,D�hc�)= �0.61,0.942�.

FIG. 6. �Color online� Branched multifractal scaling character-
istics of the ascending-order-ranked series � for the real-world and
model networks. The branched multifractal behavior for the whole-
cell network of M. jannaschii is presented as a typical example. The
two branches q�0 and q	0 lead to different characteristic points
(hc1 ,D�hc1�)= �0.63,0.96� and (hc2 ,D�hc2�)= �0.83,1.03�.
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fluctuations in the real-world networks show us the much
more nonhomogeneous structures of the PDFs of �. That is,
the PDFs of � for real-world networks tend to form much
sharper peaks at different scales.

It should be noted that in the present paper the structure-
induced localization is used as a probe of structure properties
of complex networks. We detect the localization properties
for the WSSW and BASF model networks and the cellular
networks, but it does not imply and require any localization-
related dynamical process �such as waves� occurring in the
real-world systems.

V. CONCLUSIONS

In summary, the probability distribution function of the
representative eigenvector is proposed to describe the local-
ization properties of complex networks. The localization
quantities �Q ,Sstr�, the PDFs of the NNLS, and the wavelet
transform are used to capture the characteristics of the rep-
resentative state. The nontrivial structures of the networks
can induce localization of the representative states. At the
same time, because of the global symmetries of the net-
works, the representative states have nontrivial structures
rather than the steplike distribution.

TABLE I. The scaling properties of the ascending-order-ranked series � for the WSSW, BASF, and whole-cell networks. The character-
istic points (hc ,D�hc�) for multifractals or H for monofractals are presented, which reflect the characteristics of the principal subsets. For the
branched multifractals, the characteristic points for the branches q	0 and q�0 are separated by the solidus /. The results for the shuffled
series are also presented as comparison. hc for the WSSW and BASF networks is basically in the range of 0.66�0.05, while that for the
whole-cell networks is much larger, 0.8�0.05. The asterisks denote the absence of the corresponding branches.

Networks Original series
H ,H1 ,H2,
(hc ,D�hc�)

Shuffled series
H ,H1 ,H2,
H ,H1 ,H2

Networks Original series
H ,H1 ,H2,
(hc ,D�hc�)

Shuffled series
H ,H1 ,H2,
(hc ,D�hc�)

Cellular �3� M. jannaschii �0.63, 0.96� /
�0.83, 1.03�

**
/�0.42, 0.869�

Cellular �3� S. pneumoniae 0.40 **
/�0.60, 0.908�

A. aeolicus 0.00/�0.61, 0.94� �0.45, 0.877� M. thermo-
autotrophicum

0.72 �0.48, 0.863�

B. subtilis 3.25/�0.81, 0.95� �0.72, 0.924� T. maritime 0.33 **
/�0.66, 0.879�

C. acetobutylicum 2.40/�0.88, 0.99� **
/�0.48, 0.922�

WSSW pr=0.02 �0.64, 0.980� �0.35, 0.964�

C. jejuni 0.07/�0.82, 0.95� �0.71, 0.883� pr=0.06 �0.64, 0.959� �0.43, 0.966�
E. coli 1.45/�0.78, 0.95� �0.45, 0.974�/

�0.68, 0.934�
pr=0.10 �0.62, 1.004� �0.34, 0.963�

M. bovis 2.82/�0.85, 0.88� �0.42, 0.889� pr=0.14 �0.68, 0.956� �0.33, 0.963�
M. tuberculosis 4.04/�0.75, 0.98� �0.68, 0.936� pr=0.18 �0.64, 0.989� �0.34, 0.964�
N. meningitidis 0.22/�1.20, 1.06� �0.76, 0.907� pr=0.24 1.000 �0.32, 0.967�

S. cerevisiae 2.54/�0.89, 0.92� **
/�0.61, 0.889�

pr=0.28 0.714 �0.32, 0.964�

A. fulgidus 0.95/1.23 **
/�0.57, 0.903�

pr=0.32 �0.61, 0.967� �0.27, 0.963�

C. elegans 5.70/0.71 **
/�0.50, 0.897�

pr=0.36 0.687 �0.33, 0.962�

C. tepidum 1.97/0.20 �0.49, 0.928� pr=0.40 0.546 �0.28, 0.961�
D. radiodurans 2.82/1.14 �0.75, 0.964� BASF w=1 1.099 �0.887, 0.00�
H. influenzae 3.82/0.59 �0.81, 0.964� w=2 �0.58, 0.976� �1.500/0.00�

H. pylori 4.33/0.81 �0.61, 0.895� w=3 0.638 1.135/0.00

M. leprae 3.68/0.50 �0.70, 0.887� w=4 1.06/0.40 1.197/0.00

N. gonorrheae 2.84/1.13 �0.60, 0.923� w=5 1.15/0.63 0.901/0.00

P. gingivalis 3.44/0.63 **
/�0.41, 0.912�

w=6 �0.64, 0.961� 0.847/0.00

R. capsulatus 1.59/0.00 **
/�0.68, 0.902�

w=7 �0.72, 1.014� 0.838/0.00

P. aeruginosa 0.14/0.57 �0.68, 0.915� w=8 �0.61, 0.942� 0.828/0.00

A. antinomy-
cetemcomitans

�0.54, 0.924� �0.45, 0.901� w=9 0.516 0.691/0.00

E. faecalis �0.84, 0.954� �0.65, 0.880� w=10 0.721 0.696/0.00
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The localization quantities �Q ,Sstr� and Brody distribution
parameter 
 can describe the nontrivial localization proper-
ties in a global way. The �Q ,Sstr� values tell us that the BASF
networks with w=2 are significantly localized compared
with the WSSW networks with d=2. It is consistent with the
conclusions drawn from the results of 
. The whole-cell net-
works have localization properties much closer to those of
the WSSW networks.

The wavelet transform can tell us details of the nontrivial
structures of the representative eigenvectors. The ascending-
order-ranked series � for the WSSW and BASF model net-
works and the whole-cell networks behave as monofractals,
multifractals, or branched multifractals. The PDF of � tends
to form sharp peaks at different scales in a self-similar way.

This kind of property can shed light on the global sym-
metries due to the general rules in the construction of the
networks. Hence, it can be employed as a global measure of
the network structure. Moreover, the structure-induced local-
izations on networks maybe helpful to understand the elec-
tronic conduction and heat transport properties �44� of
nanonet materials.

A closely relevant topic is the diffusion on complex net-
works. Kim et al. �45� reported their work on quantum and
classical diffusion on WSSW networks. The Hamiltonian is
the same as that in the present paper, namely, �n=0 and
tmn=1 in Eq. �1�. An electron is localized at a randomly
selected node at the beginning, then the diffusion process is
obtained by solving the time-dependent Schrödinger equa-
tion. It is found that the long-range edges can speed up dif-
fusion significantly, especially at the transition point from
pr=0 to pr�0. This is qualitatively inconsistent with our

findings of the significant changes of the participation ratio
and the structural entropy �Q ,Sstr�, when pr increases from
pr=0 to 0.02.

As for the classical diffusion on networks, a very recent
work reports the first-passage times of random walkers in
complex scale-invariant media �13,46�. Many real-world net-
works have self-similar structures, and diffusion on networks
can be regarded to a certain degree as diffusion on fractal
media, which has attracted intensive attention for its impor-
tance in theories and potential use in diverse research fields
�47�.

However, we shoud point out that it is not trivial to com-
pare our results quantitatively with these evolutionary pro-
cesses. Actually our results are obtained from the eigenstates
in energy representation, while for quantum diffusion the ini-
tial state of localization at a randomly selected node is a
wave packet and the final state should be a superposition of
the eigenstates in energy representation. How to relate the
localization to the classical diffusion is definitely interesting
but not a trivial task. Obviously, detailed work on diffusion
on complex networks is required to understand the relation
between localization and diffusion on networks.
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